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Abstract. The charged particle scattering amplitude on the magnetic field of a toroidal 
solenoid is obtained in the first Born and high-energy approximations. I t  is shown that 
multiconnectedness of the accessible space, non-triviality vector potentials in i t  and the 
single-valuedness of the wavefunctions used are not enough for the existence of the 
Aharonov-Bohm effect. Criteria are given for this. Surrounding the toroidal solenoid with 
barriers of different geometrical forms, we observe that the magnetic field contribution to 
the scattering amplitude depends crucially both on the barrier height and its form. The 
latter could hardly be explained by particle penetration into the H # 0 region. We propose 
an addendum to Tonomura’s experiments which probably could clear up any doubts about 
the existence of the A B  effect. The gedanken experiment is discussed which shows that 
the effect of inaccessible fields could be observed even in a simply connected space. 

1. Introduction 

In classical mechanics, the force acting on the charged particle is completely determined 
by the field strengths E, H :  F = e ( E + $ [ v ,  H I ) .  This means that there is no scattering 
on space regions with E = H = 0. The electric scalar potential cp and magnetic vector 
potential A play an auxiliary role in classical electromagnetic theory. They mainly 
serve to simplify the field equations. The gauge transformations of these potentials 
do not change the field strengths and, as a consequence, the particle equations of 
motion. So, in classical mechanics, the fundamental quantities are the field strengths 
E, H. 

A quite different situation arises in quantum mechanics. The reason is that elec- 
tromagnetic potentials, not field strengths, enter into the Schrodinger equation. The 
exceptional role of the electromagnetic potentials in quantum theory was discovered 
by Ehrenberg and Siday in 1949 [l]. Ten years later it was investigated in greater 
detail by Aharonov and Bohm [ 2 ] .  Among other problems they considered the 
scattering of charged particles on the magnetic field of the infinite cylindrical solenoid. 
The scattering takes place even if the space regions with E, H # 0 are absolutely 
inaccessible for the incoming particles. This phenomenon, i.e. the influence of the 
inaccessible fields, is called the Aharonov-Bohm (AB)  effect. Aharonov and Bohm 
used the single-valued wavefunctions. On the other hand, in multiconnected space 
(such as the exterior of the infinite cylindrical solenoid) there are possible non- 
equivalent representations of the angular momentum to which there correspond non- 
single-valued wavefunctions (see, e.g., [3-51 and the paper by Ohnuki in [6]). The 
equal status of these representations has given rise to the recent excited discussion oil 
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the existence of the A B  effect (see, e.g., [7] and papers by Berry et a1 in [SI). Note 
that the A B  effect arises only for single-valued wavefunctions [3-5,7,9]. On the other 
hand, the experiments performed on the cylindrical solenoid [IO] and the toroidal one 
(see, e.g., the paper by Tonomura et a1 in [6]) clearly show that the diffraction pattern 
shifts when the current in the solenoid is switched on. In the so-called alternative (or 
hydrodynamic) interpretation of the AB effect the positive outcomes of these experi- 
ments are attributed to the penetration of the incoming particles into the space regions 
with H # 0 [l  I]. There are at least two reasons for this. The finite length of the real 
cylindrical solenoid results in the magnetic field leakages near the solenoid’s ends. 
This permits one to interpret the above experiments as scattering either on the tails of 
the magnetic field or on the return flux [ 12, 131. The second reason is due to the finite 
value of the real potential barrier which keeps particles out of the region with H # 0. 
An additional complication for the infinite cylindrical solenoid is due to the fact that 
the slow decreasing ( - Y - ’ )  of the vector potential modifies the incoming wavefunction 
which turns out not to be single valued. This leads to numerous paradoxes with the 
non-conservation of angular momentum [ 141. These two drawbacks of the infinite 
cylindrical solenoid (i.e. the magnetic field tails and bad asymptotics of the incoming 
wavefunction) are lacking for the toroidal solenoid. This permits us to use plane-wave 
asymptotics for the incoming wavefunction and eliminates completely the above- 
mentioned paradoxes, so there are good reasons for treating the toroidal solenoid. 

The plan of this paper is as follows. In $ 2 we present the main facts concerning 
the toroidal solenoid. We define a function, a gradient of which is just the vector 
potential outside the solenoid. This function plays a fundamental role for the descrip- 
tion of the scattering process. In view of its unfamiliarity we apply it first in $ 3 to 
the well known case of a thin cylindrical solenoid. In $0 4 and 5 we obtain the magnetic 
field contribution to the total scattering amplitude (call it magnetic scattering amplitude 
for short) in the first Born and high-energy approximations. In § 6 the formalism of 
the generating function is applied to the scattering in ideal multiconnected space. We 
discuss what are the conditions under which the magnetic field gives no contribution 
to the scattering amplitude. We present concrete examples showing that in the same 
ideal multiconnected space with non-zero vector potentials in it and with the single- 
valued wavefunctions the magnetic scattering amplitude may or may not vanish. In 
$ 7  we discuss the conditions imposed on the wavefunction by the gauge transformation 
eliminating the vector potential outside the solenoid. In 0 8 we surround the toroidal 
solenoid with the finite potential barriers of different geometries. It turns out that for 
some geometries the magnetic scattering amplitude remains finite as the barrier’s height 
grows, while for others it vanishes. This fact could hardly be reconciled with the 
above-mentioned alternative interpretation of the A B  effect experiments. In $ 9 we 
present an addendum to Tonomura’s experiments which probably may clear up any 
doubts about the existence of the AB effect. Finally, in 0 10 we ask the following 
question: are the effects of the hidden (inaccessible) field completely unobservable in 
a simply connected space? We present a gedanken experiment showing that these 
effects could indeed be observable. 

2. Some facts about the toroidal solenoid 

Let the solenoid winding be performed on the torus ( p  - d ) * + z 2 =  R 2  whose axis 
coincides with the z one. The strength of the magnetic field equals zero outside the 
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solenoid and 

inside it. Here 4 is the magnetic field flux through the solenoid cross section. In  [15] 
the magnetic vector potential for such a solenoid was obtained in a Coulomb gauge 
(div A = 0). Its components are everywhere finite, continuous and single-valued func- 
tions of the coordinates. For large distances it falls as F3:  

4 R 2 d  1+3cos20 34 R 2 d  sin 20 
16 d - ( d 2 - R 2 ) 1 ’ 2  r3  (2.1) -- A, =- 16 d - ( d 2 - R 2 ) l i 2  r3 ’ 

A, =- 

Here A, and A, are cylindrical components of A. Due to axial symmetry they do not 
depend on the azimuthal angle cp and A,  = 0; r and 0 entering into (2.1) are the radial 
distance and the polar angle. 

As outside the solenoid the vector potential is curlless, it can be presented as a 
gradient of some function ,y [9, 161. For convenience, we call this function the 
generating one. For closed contours passing through the solenoid hole 4 A, dl # 0. 
This suggests that ,y is the discontinuous function. For the toroidal solenoid, it was 
calculated explicitly in [17]. The following two features of ,y will be needed later. 
First, ,y falls as r -2  at infinity: 

Second, ,y suffers a finite jump equal to - 4  when one crosses a part p s d - R of the 
equatorial z = 0 solenoid plane. In other words: for the toroidal solenoid the discon- 
tinuities of the generating function fill the equatorial circle of the radius d - R. 

The formalism of the generating function plays a major role in the derivation of 
the scattering amplitude. In view of its unfamiliarity and for the pedagogical purposes 
we demonstrate its effectiveness on the well known example of a thin cylindrical 
solenoid. 

3. A pedagogical example: thin cylindrical solenoid 

For the infinitely thin cylindrical solenoid with its axis directed along the z one the 
generating function equals ,y = 4 c p / 2 ~ .  Hence it follows that A, = A, = 0, A, = 4 / 2 ~ p  
as it should be. We observe that discontinuities of the generating function fill the 
positive x semiaxis. In the first Born approximation? one obtains for the magnetic 
scattering amplitude: 

exp[-ik(x’ cos cp +y’  sin cp)]AV&, dx‘ dy‘ 
e 

(3.1) 

Here CL0 is the wavefunction in the absence of the magnetic field (i.e. = exp(ikx)). 

+ W e  know [18]  that the difference of the first Born approximation for the infinite solenoid from the exact 
results in the limit of small magnetic fluxes is due not to the drawbacks of the Born approximation but 
rather to different physical situations. 
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Setting A =grad  ,y and integrating twice in parts, we transform (3.1) to 

dx’ dy’ div{exp[ -ik(x’ cos cp + y’ sin cp)] grad ,yt,bo 
e 

f = - -  
2hc  (2xik)”’  

- ~ t c , ~  grad exp[-ik(x‘ cos cp + y’ sin cp)]}.  

Applying the Gauss theorem (with a modification due to the discontinuity of the 
,y function) this integral may be reduced to the linear integral over the circumference 
of the sufficiently large radius Ro 

exp{ikR,[cos cp’+cos(p - cp‘)]) 

x  COS cp’+co~(cp - c p ’ ) ]  dcp‘ 

and that over the discontinuities of the ,y function 
(3.2) 

I2  = Tiky sin cp loRo d x  exp[ikx(l -cos cp)] 
( 2 ~ i  k )  

sin cp 
{exp[ikRo( 1 -cos cp)] - l}. - TY - 

(2 r ik )” ’  1 -cos cp 

Taking into account that the integral in (3.2) rapidly oscillates for Ro+ 00 and using 
the steepest descent method one obtains: 

sin cp e 4  exp[ikR,( 1 -cos cp)] y = - .  
” = - ( 2 ~ i k ) ” *  1 -cos cp hc 

TY 

Adding I ,  and I2  results in 

TY sin cp 

fAB=-(2.irik)1’2 1-cos cp 

i.e. one recovers the usual A B  amplitude for the point solenoid. 

4. The perturbative scattering amplitude on the magnetic field of the toroidal solenoid 

Here we consider the scattering of the charged zero-spin particles on the curlless vector 
potential of the toroidal solenoid. In order to keep incoming particles out of the region 
with H # 0, one screens this field using the infinite repulsive potential of the suitable 
geometrical form. The repulsive potential being infinitely high, the wavefunction 
vanishes on the boundary of the impenetrable screen (as well as inside it). So, one 
should solve the Schrodinger equation 

h Z  

2 P  
- - ( V  -: + Vtc, = Etc, (4.1) 

where V = 00, @ = 0 inside the screen and at its boundary and V = 0 otherwise. Consider 
first the case when the solenoid To is embedded into a screen of the toroidal form. 
For simplicity, we take it to coincide with To. We restrict ourselves to the first-order 
perturbation theory WRT the vector potential A .  Then 

Go(r, r‘)A.Vt,b,dV’. (4.2) 
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Here Go and Go are the wave and Green functions, respectively, corresponding to the 
scattering on the impenetrable torus in the absence of the magnetic field. They vanish 
on the surface of To. Integration in (4.2) runs outside the solenoid where A =grad x. 
Further, one has the identity 

A grad Go = grad x grad t,b0 = ~ A ( X $ ~ )  --;x A$o = + ( A +  k2)$,,x 

( A  and K are the Laplace operator and wavenumber respectively). Then 

$ = $0 + - Go(A + k2)x$o d V'. 
hC i e  I (4.3) 

Integrating (4.3) twice by parts and using the equation for Go one obtains: 

(4.4) hC i e  I ie 
hC = $o + - x$o + - div( Go grad xG0 - xGo grad Go) d V'. 

To calculate the scattering amplitude, we need only the limit of (4.4) as r + W. The 
first term in the RHS of (4.4) gives the incident plane wave (due to the vector potential 
asymptotic behaviour (2.1)) and the scattering amplitude on the impenetrable torus 
in the absence of the magnetic field. The second term may be neglected as x goes to 
zero as r-* for r+co. Now consider the third term in (4.4). Forget for the moment 
that the vector function on which the divergence operator acts is discontinuous (due 
to the x function). Applying the Gauss theorem one can replace the volume integration 
by that over the surface enveloping this volume. This surface consists of two parts: 
the surface of the torus To and that of the infinite radius sphere CR. The integral over 
the torus surface vanishes since both Go and Go equal-zero there. So, there remains 
the integral over CR 

Due to the asymptotic behaviour of the x function and to the rapid oscillations of the 
integrand, the above integral tends to zero like R-' as R + CO [17]. Now we take into 
account the discontinuous nature of the x function. A careful examination (see [17] 
or [ 191) shows that the Gauss theorem should be modified: the following integral over 
the discontinuity region should be added to the mentioned surface integrals 

The wave equation is not separated in toroidal coordinates, so one should find some 
substitute for Go and Go in (4.5). Following the Kirchhoff method in optics [20], we 
approximate them on the solenoid hole by the unperturbed values 

1 exp(ik)r - r'l) Go = exp(ikr) Go=-- 
4~ Ir-r'l (4.6) 

Finally, passing to the limit r + 00 in (4.5), one obtains the magnetic scattering amplitude 
(the initial wavevector is directed along the z axis): 

f, = %!- (1 +cos e) exp( -ikp' cos p sin 0)p' dp' d p  
4ThC i 

1 +COS e 
J,[k(d - R )  sin e]. -- - e' (d-R)- 

2hc sin e (4.7) 
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Figure 1. The toroidal solenoid (dark) is embedded into the toroidal potential barrier of 
height V,. The magnetic scattering amplitude tends to a finite value (4.9) as V,+cc. 

For the thin solenoid ( R / d < c  1) this results in 

e4d 1 +cos e 
2hc sin 6 

J1( kd sin e). -~ (4.8) 

Equation (4.8) was obtained earlier in a very interesting paper [21] but the procedure 
used there gives rise to doubt. In fact, the vector potentials used in it had &type 
singularities on the z = 0 plane. As a result, the neglected term 

A2 
e2 

h2C2 
-- 

turns out to be more singular than taking into account 

ie 
hC 

-- (2AVGo+ Go div A ) ?  

The integral 

exp( -iknr’)A2Go d V ’  

diverges and this leads to the infinite scattering amplitude. On the contrary, as the 
potentials used here are everywhere continuous, finite and single-valued functions, the 
terms quadratic in the potential may obviously be neglected for small values e4/hc.  

Equation (4.7) is easily generalised for the impenetrable toroidal screen which 
encompasses the solenoid To (see figure 1): 

e& 1 +cos 8 
2hc sin 8 

f, =--J,(ka sin e).  (4.9) 

The parameter a is shown in the same figure. 

5. High-energy scattering amplitude 

Now we calculate the scattering amplitude on the toroidal solenoid in the high-energy 

+ div A # 0 for the cector potential used in [21]  
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approximation. For this we make in the Lippmann-Schwinger equation 

+ = Go + Go( r, r') VI $( r') d V I 
the following simplifications [22], typical for this method. Change the Green function 
Go by the plane function; 

1 
4T 

- - e x p ( i k ~ r - d ~ ) ~ r - r ' ~ - ' ,  

Instead of $ make use under the integral of its high-energy approximation: 

exp( ikz + [:=Az dz) . 

This is correct only if e/(hck)A2<c lAzl, Otherwise, the terms quadratic in the vector 
potential should be included in the integrand. This in turn leads to the infinite scattering 
amplitude for the singular vector potentials used in [21]. The potentials used in the 
present work are everywhere finite and continuous. Thus, the above condition is 
fulfilled and one has for the scattering amplitude: 

Here q = k - k' is the momentum transfer; k ' =  nk, k = e,k. As for high energies the 
small-angle scattering dominates, the vector q may be considered to be perpendicular 
to the initial wavevector k ;  therefore q lies in the z = 0 plane. Then 

f l ( n )  =- ek I d2p exp(iqp) 1' dzA, exp( e hc 1' --r; A, dz') 
2ThC -a 

As expected, this high-energy amplitude coincides with the perturbative one (4.7) for 
small values of eq5/hc and angles 6. 

The following generalisation for the case presented in figure 1 is evident: 

f , (n)=-ika exp - -1  J , ( q a ) / q .  [ rhe:) 1 
6. The scattering in ideal multiconnected spaces 

In the previous two sections we have considered the scattering of charged particles on 
the toroidal solenoid shielded with the impenetrable torus which either coincides with 
the solenoid or encloses this solenoid in a manner presented in figure 1. Now we 
surround the toroidal solenoid with different impenetrable screens and study particle 
scattering on the accessible magnetic fields. Some digression is needed however. We 
note that outside the solenoid the Schrodinger equation (4.1) is satisfied by the following 
expression: 
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where ,y is the generating function defined in § 2 and cL0 is the wavefunction in the 
absence of the magnetic field. The transformation (6.1) is unitary and  this guarantees 
the coincidence of all the observables for (I/ and Go. We always choose I) (which is a 
solution of the unabridged Schrodinger equation (4.1)) to be single valued. So, in 
general (due to the discontinuity of the ,y function) (I/o in (6.1) is the multivalued 
wavefunction. It may happen that discontinuities of the ,y function lie completely 
inside the inaccessible region. There (I/ = (I/o = 0 and (6.1) is a unitary transformation 
between two single-valued functions with ((I/) and without ( cL0) magnetic field. In this 
case a magnetic field does not lead to the observable effects. Hence, there is no room 
for the A B  effect. 

After this digression, we consider concrete examples. In figure 2 the toroidal 
solenoid is embedded into the impenetrable infinite cylinder Co. As the singularities 
of the toroidal generating function lie all inside CO (where (I/ = 0), there is no A B  effect. 

Another example of the multiconnected topological space with non-zero vector 
potential in it is shown in figure 3 where the toroidal solenoid is embedded into one 

I I 
I I 
I I 

I I 
I I 

I I 
I 

Figure 2. The toroidal solenoid is embedded into the infinite cylindrical potential barrier 
of height Vo. The magnetic scattering amplitude tends to zero as VO+m. 

Figure 3. The toroidal solenoid is embedded into one arm of the toroidal potential barrier 
of height Vo. The magnetic scattering amplitude tends to zero as Vo+ccc. 
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‘arm’ of the impenetrable torus. As in the previous case, there is no AB scattering. 
This means that for the same multiconnected space (i.e. the exterior of the torus) the 
existence of the AB effect depends crucially on the way in which the toroidal solenoid 
is embedded into this torus (there is an A B  effect for figure 1 and no such effect for 
figure 3 ) .  

We conclude that the existence of the AB effect is not determined solely by the 
multiconnectedness of the accessible space, non-triviality of the vector potentials in it 
or the single-valuedness of the wavefunction. The condition for the existence of the 
AB effect may be expressed either in terms of the generating function (it exists if the 
discontinuities of this function lie in the accessible region) or non-integrable phase 
factor [ 2 3 ]  (there are closed, accessible for particles, paths along which $ A,  dl # 0). 

7. On the gauge transformations which change vector potentials outside the solenoid 

The fact that A =grad x outisde the solenoid raises the hope of eliminating the vector 
potential there via the suitable gauge transformation. It has been shown [ 9 , 2 4 ]  that 
for one cylindrical solenoid it leads to the singular magnetic field on the solenoid axis 
directed opposite to the initial magnetic field. For the toroidal solenoid wound on the 
torus ( p  - d ) ’ +  z 2  = R 2 ,  the gauge transformation eliminating the vector potential 
outside the solenoid gives rise to the singular magnetic field 

H = -  @ ( z ) G ( d  -RI 
277 

As these gauge transformations are singular, they also modify the boundary properties 
of the wavefunctions: being single-valued before the gauge transformation, they become 
multivalued after it. The boundary properties of the wavefunctions are unchanged if 
one uses a non-singular gauge transformation. As an example, consider the infinite 
cylindrical solenoid. The strength of the magnetic field is constant inside the solenoid 
( H ,  = Hy = 0, H ,  = H )  and zero outside it. In addition to the usually used vector 
potential ( A ,  = - H R 2 y / 2 p 2 ,  A, = H R ’ x / 2 p 2  outside the solenoid and A,  = - H y ,  A ,  = 
H x  inside it), one may equally work with the following one (figure 4 ) :  A:=O 
everywhere, A:, = H [ x  + ( R2 - y 2 ) ’ ” ]  inside the solenoid. Outside it A:, differs from 
zero inside the shaded strip - R < y < R, x > 0: Ai, = 2 H  ( R2 - y’) These vector 
potentials are connected through the non-singular gauge transformation: A = 

’t 

Figure 4. The vector potential of the cylindrical solenoid in a non-standard gauge. Outside 
the solenoid A differs from zero in the shaded region only. 
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A’-grad a a / d y ,  where a satisfies the equation 

d’a a2a 
ax2 ay 
-+-= H f ( x ,  y ) .  

The function f equals x+(R2-y’)”’ inside the solenoid. Outside the solenoid it 
equals 2(R2-y2)’” in the shaded region and  zero otherwise. For the infinitely thin 
solenoid A‘ degenerates into 

A:=O A I  = @ ( Y ) O ( X )  4 = =R’H 

i.e. in this gauge the vector potential is everywhere zero except for the positive x 
semiaxis. 

Earlier, evaluating the scattering amplitude on the toroidal solenoid ( p  - d ) ’ +  z 2  = 
R 2  we have used the vector potential which falls as Y - ~  at large distances (see (2.1)). 
In [ 151 the vector potential was obtained for which the single non-vanishing component 
A, differs from zero only in the nearest vicinity of the solenoid. It equals 

d + ( R’ - 2’) ‘ I 2  
g l n  

inside the solenoid and  

d + ( R 2  - Z’)  ” 2  

In d - (R’ - z2 ) ’ / ’  

in a shaded region (see figure 5 ) .  Here 

and  4 is the magnetic flux. In [ 151 the gauge transformation between these two vector 
potentials was found. 

Here is a conclusion. We may use a gauge transformation eliminating the vector 
potential in some regions of space. The single-valued wavefunctions may be used if 
the function-generating gauge transformation is well behaved. Otherwise, care should 
be paid to the boundary conditions of the wavefunctions. These considerations are 

Figure 5. The same as in the previous figure but for the toroidal solenoid. 
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rather trivial but disregarding them has given rise to numerous paradoxical and 
erroneous conclusions. 

8. The scattering on the magnetic field for the potential barriers which are not 
completely impenetrable 

We return again to (6.1). In general it connects the single-valued and non-single-valued 
wavefunctions. In the previous section we have chosen I) to be single valued. Other 
choices which lead to a different physics are also possible. For example, one may take 
I), to be single valued (see, e.g., Bocchieri’s and Loinger’s papers in [SI).  The 
transformation (6.1), being unitary, all observables for I) (which in the present case 
is the multivalued solution of (4.1)) and I), (the single-valued solution of the free 
Schrodinger equation) are the same, so the magnetic field contributes nothing to the 
scattering and there is no AB effect. The indeterminacy of the choice of the wavefunc- 
tions merely reflects the existence of the inequivalent representations of the angular 
momentum in the idealised multiconnected space. The equal status of these representa- 
tions and the lack of a reliable criterion? for choosing one of them have given rise to 
the recent excited discussion on the AB effect existence [7,8]. 

On the other hand, the real experiments are performed in a simply connected space 
where only single-valued functions are permissible. People who deny the existence of 
the AB effect attribute the positive outcomes of the experiments to the particle penetra- 
tion into the regions with Hf 0. This may be due to either boundary effects (i.e. 
magnetic field leakages near the real cylindrical solenoid ends) or the finite value of 
the potential barrier keeping particles out of the region with H # 0. To clarify the role 
of these reasons, we proceed as follows. At first, we surround the infinite cylindrical 
solenoid with the potential barrier of finite height V, .  We estimate the contribution 
of different space regions to the scattering amplitude. It turns out that finite values of 
V,, which permit particles to reach the H # 0 region, cannot explain the AB effect. To 
get rid of the boundary effects we turn to the toroidal solenoid. We surround it with 
the finite potential barriers of different geometrical forms. In each case the particle 
penetration to the region with H # 0 tends to zero as the barrier height V,+ CO. On 
the other hand, the magnetic scattering amplitude tends to zero for some geometries, 
while for others it remains finite. Such a distinct behaviour of the magnetic scattering 
amplitudes could not be explained in terms of the H # 0 scattering. 

8.1, Scattering on the penetrable cylindrical solenoid 

Let the cylindrical solenoid of the radius R be surrounded with the cylindrical potential 
barrier CO of the finite height V, and of the radius b > R. Then, in the first Born 
approximation one has for the magnetic scattering amplitude 

+ For instance, the application of the single-valuedness and Pauli’s criteria to the infinite cylindrical solenoid 
leads to different physical situations (there is A B  scattering in the first case and no such scattering in the 
second one [4,2S]). 
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Here m is the angular momentum of the scattered particle and k is its wavenumber 
outside Co. The partial amplitudes fi  , are: 

2 lml 

lm/ s = ~  
+- A(0,  s, m ) [ J , ( k b )  - rmH;’ ) ( kb ) l2 ) .  

Here k ,  is the wavenumber inside the solenoid 

P P  ( vo - E)]”*  
h 

k ,  = 

Js, Hi” and I ,  mean the Bessell, Hankel and modified Bessel functions: 

rm =jmlhm 

h, = kbll,l(k,b)H;A)l(kb) - k , b j ~ , ~ ( k i b ) H / ~ ) ~ ( k b ) .  

j ,  = kbIl ml ( k ,  b )q  ml( kb 1 - ki bjlmi ( ki b )  HiA)l( kb 1 

The dot over the Bessel functions means derivation with respect to their arguments. 
At last 

C$ is the magnetic field flux through the solenoid’s cross section. The first line in this 
equation is due to the magnetic field inside the solenoid, the second one comes from 
the magnetic field outside the solenoid but inside Co. Finally, the third line originates 
from the magnetic field outside Co. When Vo grows the contribution of those space 
regions which are inside CO (and hence those, for which H # 0) continuously decreases. 
For Vo = a: one obtains the usual AB scattering amplitude for the impenetrable solenoid: 

m /,I 
f t B  = 2iry-  [ J r ( k b )  -smHji’(kb)l2A(0,  1, m )  

lml r=o 

( s m  = JIml(kb)/H/A)l(kb))* 

We conclude: for large values of the potential barrier the contribution of the H f 0 
regions to the magnetic scattering amplitude is negligible. Thus, positive outcomes of 
the experiments testing the A B  effect cannot be attributed to the finite values of the 
barrier’s height. 

8.2, Scattering on the penetrable toroidal solenoid 

To get rid of the boundary effects we surround the toroidal solenoid with the finite 
barriers of different geometrical forms. We demonstrate the method used surrounding 
first the toroidal solenoid ( p  - d ) 2 +  z 2  = R 2  with the spherical potential barrier So of 
the radius R o > d + R ( V =  Vo inside So, and 0 outside it, see figure 6). Then, one 
obtains for the magnetic scattering amplitude in the first Born approximation 

f 1 =  c f ; s ( c o s  0 )  
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Figure 6.  The toroidal solenoid is embedded into the spherical potential barrier of height 
V,. The magnetic scattering amplitude tends to zero as V,+co. 

Here $o is the wavefunction in the absence of the magnetic field, RI is 

Now we separate volume integration in J ;  into two parts corresponding 
and exterior of the solenoid. In the latter we set A =grad x, integrate 

its radial part 

to the interior 
twice in parts 

and present as a volume integral from divergence. Applying the Gauss theorem we 
transform this integral into the surface ones: over the solenoid surface, over the 
discontinuities of the x function and over the surface of the sphere SI of large radius 
R ,  . Due to the asymptotic behaviour of the x function (-f2) the integral over the 
S, surface vanishes in the limit R I  + CO. So, there remains integration over the nearest 
vicinity of the solenoid which lies completely inside So (note that singularities of the 
x function are also inside So).  As both RI and $r0 tend to zero inside So as V0+w, so 
does the magnetic scattering amplitude f l  . More generally, the magnetic field contribu- 
tion to the scattering amplitude tends to zero as the barrier’s height Vo increases if the 
space regions with H # 0 as well as the singularities of the  x function are inside the 
barrier. This is illustrated also in figure 2 where a toroidal solenoid is surrounded with 
the cylindrical potential barrier or in figure 3 where it is embedded into one arm of 
the toroidal barrier. On the other hand, if the space regions with H # 0 are inside the 
potential barrier but singularities of the x function are completely or partly outside 
it, then the contribution of the magnetic field to the scattering amplitude remains finite 
as the barrier’s height increases. This is illustrated in figure 1 where the toroidal 
solenoid is surrounded by the toroidal potential barrier of the height Vo. For large 
values of Vo the magnetic scattering amplitude tends to (4.9). Thus, in some cases 
(toroidal solenoid in spherical or cylindrical potential barriers or in one arm of the 
toroidal potential barrier) the contribution of the magnetic field to the scattering 
amplitude vanishes as the barrier’s height grows. In other cases (see, for example, 
figure 1) it tends to a finite value. Such a distinct behaviour appears strange if one 
interprets the A B  effect experiments as scattering on space regions with H f 0. In fact, 
the particle penetrability into the H # 0 region is practically the same for the barriers 
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of different geometry and in each treated case goes to zero as Vo+co. On the other 
hand, this fact has natural interpretation either in terms of the non-integrable phase 
factor [23] (the above contribution remains finite if after the transition to the limit 
Vo+ a3 there remain closed paths accessible for particles along which 4 A,  d l  # 0) or 
by means of the generating function (the magnetic field contribution remains finite if 
the potential barrier does not completely shield the singularities of the ,y function). 

9. On the experiments testing the Aharonov-Bohm effect 

Beautiful experiments confirming the existence of the AB effect were performed by 
Japanese physicists [26] who studied the electron scattering on the screened toroidal 
magnet. The magnetic field shielding was achieved by the Cu and superconductor 
layers on the solenoid surface. The magnetic field leakages and particle penetration 
into the H # 0 region were extremely small in this experiment. The opponents of the 
AB effect assert, however, that however small these things are they can simulate the 
AB interference shift (see, e.g., Loinger’s paper in [SI ) .  The following addendum to 
these experiments will probably clear up any doubts about the existence of the A B  effect. 

We turn again to (4.9), determining the magnetic field contribution fi  to the total 
scattering amplitude f: The last one is the sum of the scattering amplitude fo in the 
absence of the magnetic field, and f i .  Looking at equation (4.9) we observe that f i  

depends only on the inner torus radius a and on the magnetic field flux 4. The 
amplitude f o  depends only on the minor a and major b radii of the torus encompassing 
the solenoid. Then it is possible (for fixed a, b and 4 )  to vary the solenoid and layer 
parameters without changing f: This is illustrated in figure 7 where one sees two 
configurations entirely equivalent from the usual quantum mechanical viewpoint (in 
the framework of which the above formula (4.9) was obtained and which treats the 
AB effect as scattering on space regions with H = 0 ,  A Z O ) .  On the other hand, they 
are quite different from the alternative viewpoint (in fact, the particle penetrability 
into the H # 0 region is much smaller for the left configuration than for the right one). 
The next fact that could be tested experimentally is the dependence of the interference 
shift (when the current is switched off and on) on the solenoid’s orientation. It is 
maximal when the initial wavevector is normal to the plane on which the singularities 
of the ,y function are situated (it coincides with the equatorial solenoid plane). 

Figure 7. Two typical configurations are shown which exhibit the same quantum mechanical 
scattering. However, they are  completely non-equivalent from the alternative viewpoint 
on  the A B  effect. 
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The experimental investigation of particle scattering on the toroidal solenoid embed- 
ded either into the sphere (figure 6 )  or one arm of the torus (figure 3) is also interesting?. 
The usual quantum mechanical treatment of the AB effect predicts zero shift of the 
interference pattern in both cases while the alternative treatment gives a finite value 
for the same shift. 

10. The observable effects of the hidden fields in simply connected spaces 

We again consider the toroidal solenoid ( p  - d) '+  z2 = R2 embedded in the impen- 
etrable sphere. The space accessible for particles is simply connected. Is it possible 
to detect the existence of the magnetic field by carrying experiments outside the sphere 
only? There are no paths accessible for particles along which 4 A,  d l  # 0. According 
to [23], no such experiment is possible. The following gedanken experiment seems to 
contradict this statement. We observe that the magnetic field inside the solenoid 

results in the following increasing of the solenoid mass: 

Emagn 1 1 4 2  A m = -  H 2 d V = -  
C 2  8~ 8~ d - ( d 2 -  R2) ' I2 '  

This in turn modifies the gravitational field outside the solenoid. Thus the scattering 
process for the particle with a finite mass looks different when the current is switched 
on or off. In the same way the current switching changes the parameters of the bound 
state orbits. 

11. Conclusion 

We summarise the main results obtained. 
(i)  The contribution of the magnetic field surrounding the toroidal solenoid to the 

scattering amplitude is evaluated in the first Born and high-energy approximations. 
(ii) The conditions are stated when the magnetic field does not contribute to the 

scattering amplitude. 
(iii) We study what properties the gauge transformation eliminating the vector 

potential in some region of space should have in order not to change the boundary 
conditions of the wavefunction. 

(iv) Surrounding the toroidal solenoid with the penetrable potential barriers of 
different geometrical forms we estimate the contribution of the different space regions 
to the magnetic scattering amplitude. It turns out that a positive outcome of the 
experiments testing the A B  effect could hardly be explained by the particle penetration 
into the H # 0 region. 

(v)  Experiments are proposed which probably could clear up any doubts about 
the existence of the A B  effect. 

(vi) The gedanken experiment is presented which shows that the effect of inaccess- 
ible fields could be observed even in a simply connected space. 

t Due to the ambiguity of the path integral formulation in a multiconnected space the latter case is particularly 
important. See, e.g., [27] or papers by Ohnuki and lnomata in [ 6 ]  and, especially, the subsequent discussion. 
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